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coupled system composed by the direct and adjoint Helm-
holtz equation and the optimality condition which varia-We present an iterative domain decomposition method to solve

the Helmholtz equation and related optimal control problems. The tionally expresses that the control is optimal. This method
proof of convergence of this method relies on energy techniques. actually solves at the same time the equations and the
This method leads to efficient algorithms for the numerical resolu- optimization problem, whereas classical methods require
tion of harmonic wave propagation problems in homogeneous and

the iterated resolution of direct and adjoint problems inheterogeneous media. Q 1997 Academic Press

order to compute descent directions for a gradient-type
method. The proposed method is easy to implement and
naturally adapted to parallel computers, the use of which1. INTRODUCTION
is a major trend in modern scientific computing.

The numerical resolution of the Helmholtz equation and The main advantage of the DDM proposed in this paper,
related optimal control problem in heterogeneous media at least for the memory requirements of numerical simula-
at high wave number with various boundary conditions is tions, is that it reduces the global problem to the iterative
a challenging problem. Domain Decomposition Methods resolution of smaller sub-problems. The user is then free
(DDM) to solve some of these problems were developed to choose any suitable existing Helmholtz volumic solver.
in [3, 4, 7–9, 14–20, 29, 32, 38, 40]. These techniques can Because they are designed for infinite domains, the use
generally be extended to Maxwell’s equations, which cover of standard integral methods [12, 33, 39] seems a priori
numerous applications in electromagnetics. impossible. They apply, moreover, only to the homoge-

The aim of this paper is to give in a unified framework neous case.
a formal presentation of the algorithm proposed in [15] We present in Section 2 the domain decomposition
for the exterior Helmholtz equation with the lowest order method for the resolution of the exterior Helmholtz equa-
absorbing boundary condition and its extension to optimal tion with the lowest order order boundary conditions. A
control problems governed by this equation. We also pres- proof of convergence is given based on energy estimates.
ent the application of this method to more general bound- We focus on these energy estimates since:
ary conditions such as that arising in wave guide problems
and to the heterogeneous case. We finally discuss the use (i) These estimates are not standard in the context of
of the DDM in conjunction with the PML technique [5]. elliptic coercive problems.

The idea is to split the domain into smaller sub-domains (ii) They help to understand why the algorithms con-
and solve a sequence of similar sub-problems on these sub- verge.
domains. The boundary conditions are adjusted iteratively

(iii) Slight modifications of this technique can be usedby ad hoc transmission conditions between adjacent sub-
in various cases of boundary conditions and equations.domains. The number and size of sub-domains can now

be chosen to enable direct methods to solve the sub-prob-
Section 3 deals with the optimal control of systems gov-lems. In the case of optimal control a classical technique

erned by such equations. Different ‘‘coupled’’ transmissionrequires the iterated resolution of direct and adjoint Helm-
conditions are introduced. Convergence is again obtainedholtz problems in order to compute descent directions for
using energy estimates but the arguments differ from Sec-a gradient-type method. In this paper we decompose the
tion 2. Section 4 discusses the application of the domain
decomposition to the inhomogeneous case, waveguides
problems, and PML technique. A test case is solved numer-1 E-mail: Jean-David.Benamou@inria.fr.

2 E-mail: despres@limeil.cea.fr. ically in Section 5.
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defined in all space and satisfies the Sommerfeld radiation
condition (expressed in polar coordinates, where r is the
radius)

­

­r
u 1 ig !r

e
5 O S1

r2D when r goes to 1y. (2)

This approximate boundary condition is introduced to
bound the domain for actual computations. We want to
mention that this lowest order boundary condition on Gext

plays a fundamental role in the well-posedness of (1) (see
[15, 26]) and in the design of the DDM presented in this
paper. There exists of course more accurate absorbing
boundary conditions. See, for instance, [1, 24] on this topic.

One may also want to use a non-local Dirichlet-to-
FIG. 1. Geometry of the diffraction problem: a resonator. Neumann operator (see [25, 27]) in the boundary condi-

tions on Gext . The boundary condition now takes the form

2. DDM FOR THE HELMHOLTZ PROBLEM ­

­n
u 1 T(u) 5 0. (3)

2.1. The Helmholtz Equation and the
Truncated Domain This is the case in our wave-guide section (4.2.1).

The Neumann boundary condition imposed on Gint simu-In this section we review the model and various bound-
lates the presence of a ‘‘hard’’ object. If one wants to studyary conditions for the exterior Helmholtz problem which
scattering by a ‘‘soft’’ object, one has to use a Dirichletwill be considered throughout this paper.
boundary condition u 5 2uinc . Impedance boundary con-Let V be a sufficiently smooth bounded open set in R2

ditionsor R3 containing an obstacle. The boundary G 5 ­V is
divided into an interior boundary Gint (the boundary of
the resonator) and an exterior boundary Gext (see Fig. 1. ­

­n
u 1 igzu 5 2

­

­n
uinc 1 igzuinc , (4)

for example).
The out-going normal is denoted by n. In a scattering

problem the source term uinc , called the incident wave where z is a complex number, are also possible. Re(z) $
(usually a plane wave), illuminates the object located inside 0 is a necessary condition to obtain well-posedness. This
Gint . The scattered wave is the complex valued solution of is a compatibility condition with the lowest order absorbing

boundary condition. Impedance boundary condition can
be derived from the Leontovitch boundary condition [6]
for electromagnetic waves.

Finally let us mention the recent Perfectly Matched
Layer technique [5], which consists in adding a damping5

2=(e=Wu) 2 g2ru 5 f in V

­

­n
u 5 2

­

­n
uinc on Gint

­

­n
u 1 ig !r

e
5 0 on Gext ,

(1)
layer around the computational domain. These PML are
remarkable because they generate (for the continuous
equations) no artificial reflections at the interface between
the domain and the layers. Their numerical discretization
and implementation for the Helmholtz equation have beenwhere g is the frequency of the harmonic oscillations. The

coefficients e and r are strictly positive bounded, possibly studied with good results in [5, 10, 37]. We briefly describe
these PML in a simplified situation. We consider the homo-discontinuous, real functions characterizing the non-dis-

persive medium. Their physical interpretation varies ac- geneous (i.e., u 5 r 51, f 5 0) case in R2. Let (x, y)
denote the space coordinates. Suppose we want to solvecording to the modeled physical situation [39]. The source

term f is given and arises from these inhomogeneities. the problem in the half space x , 0. We extend the problem
to the union of the half plane and an absorbing layerThe boundary condition on Gext is an absorbing boundary

condition of the lowest order (following [1]). It approxi- defined as a strip 0 , x , d. In this case the PML has
been shown to be equivalent in the layer to the modifiedmates the outgoing character of the scattered wave on

the truncated domain. In the exact model, the solution is equation [10, 11]
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u1 satisfy the equation 2Du1 2 g2u1 5 0, with the boundary
conditions (8) above.

It is well known, however, that this problem may be ill-
posed due to the existence of eigenvalues of the Laplace
operator [36]. We propose instead to linearly combine Eqs.
(7) and (8) to get the equivalent boundary conditions

­

­n2
u2 1 igu2 5 2

­

­n1
u1 1 igu1 (9)

and

­

­n1
u1 1 igu1 5 2

­

­n2
u2 1 igu2 . (10)

FIG. 2. Simple decomposition.
The sub-problem on V1 , together with condition (10), is
now well posed. This sub-problem is of the same type
as the global problem, which is well-posed thanks to the

2­2
xxu 2 d­y(d­yu) 2 g2u 5 0, (5) absorbing boundary condition (see above). These mixed

(or ‘‘Robin’’) boundary conditions play an important role
where d 5 ig/(ig 1 s) and s is a real parameter which is in the definition of our domain decomposition method.
responsible for the exponential damping of the wave. The
sign of s determines the in-going/out-going character of 2.2.2. The Basic Algorithm
the scattered wave.

We describe the domain decomposition algorithm. The
idea is to adjust the boundary conditions iteratively at2.2. The Domain Decomposition Method
the interfaces between sub-domains to obtain transmission

We simplify the description of the method by restrain- conditions of the type (9), (10).
ing ourselves to the homogeneous case (i.e., e 5 r 5 1, We introduce some notations. Let us split V into a finite
f 5 0). The extension to the heterogeneous case is discussed number of non-overlapping sub-domains Vk , 1 # k # K,
in Section 4.1. The equation is now with sufficiently smooth boundaries. These sub-domains

have interfaces denoted by Skj 5 Sjk 5 ­Vk > ­Vj . They
may also have a part of their boundaries impinging on G.
So we write Gk,ext 5 ­Vk > Gext and Gk,int 5 ­Vk > Gint (see
Fig. 3). The out-going normal for Vk is nk .5

2Du 2 g2u 5 0 in V

­

­n
u 5 2

­

­n
uinc on Gint

­

­n
u 1 igu 5 0 on Gext .

(6)

2.2.1. Transmission Conditions

Let us consider a trivial case where V is split into 2 sub-
domains V1 and V2 such that the boundary of V2 has an
empty intersection with ­V (see Fig. 2).

We denote by u1 and u2 the restrictions of u (solution
of (6)) in respectively V1 and V2 . u1 and u2 satisfy the
interface conditions on ­V1 > ­V2

u1 5 u2 (7)

­

­n1
u1 5 2

­

­n2
u2 , (8)

FIG. 3. A decomposition of the domain.where ni is the exterior normal to Vi . If (­/­n2)u2 is given,
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We now define the following iterative procedure using PROPOSITION 1. The pseudo-energy satisfies
Robins transmission conditions (the superscript denotes
the rank of the iterative procedure). E n11 5 E n 2 2g2 O

k
E

Gk,ext

ueun11
k u2 1 ueun

ku2. (13)
Initialize u0

k for all k, then iterate for n . 0

The proof comes from the following computations. First,
using the equation on each sub-domain and integrating by
parts against the conjugate of igeun11

k , we have5
2Dun11

k 2 g2un11
k 5 0 in Vk

­

­nk
un11

k 1 igun11
k 5 2

­

­nj
un

j 1 igun
j on Skj

­

­nk
un11

k 1 igun11
k 5 0 on Gk,ext

­

­nk
un11

k 5
­

­nk
uinc on Gk,int .

(11) Re SE
­Vk

­

­nk
eun11

k igeun11
k dsD

(14)

5 Re S2ig SE
Vk

u=eun11
k u2 2 g2ueun11

k u2D dxD5 0.

Then, using the boundary conditions on Gk,int , Gk,ext , weThe boundary condition on Gk,int for the sub-problems is
recombine in (13) the integral on the boundary of eachdetermined according the boundary condition on Gint of
sub-domain to express the missing cross products in (15):the global problem (6) (i.e., un11

k 5 uinc on Gk,int for a soft
obstacle and so forth). When Gk,int 5 0/ or Gk,ext 5 0/ , i.e., Vk

is an ‘‘interior’’ sub-domain, the corresponding boundary
E n11 5 O

k? j
E

okj
U ­

­nk
eun11

k 1 igeun11
k E2

ds

(15)
condition is simply ignored. This algorithm is an Helmholtz
adaptation of the well-known Schwarz algorithm for ellip-
tic problems described in [31]. Thanks to the Robin trans- 2 2g2 O

k
E

­Gk,ext

ueun11
k u2 ds.

mission conditions, the sub-problems are well posed. No-
tice that, at each step of the iterative procedure, the

The transmission conditions now giveresolution of each sub-problem is explicit and independent
of the other sub-problems.

E n11 5 O
k? j

E
okj
U2

­

­nk
eun

k 1 igeun
kE2

ds

(16)
2.2.3. Convergence

We are able to prove the convergence of the procedure
2 2g2 O

k
E

­Gk,ext

ueun11
k u2 ds.(11) under various hypothesis on the regularity of the solu-

tion [15]. We do not want to go inside the mathematical
details of the proof. We instead assume enough regularity

We finally use the analog of (14) at step n to obtain (13).
on the global solution of (6) and of the initialization (u0

k)
We deduce from Proposition 1 that:

of the iterative procedure to be able to define a ‘‘pseudo-
energy’’ linked with the algorithm. Let us define the error (i) (E n) is a bounded sequence.

(ii) ok e
Gk,ext

ueu n
ku2 ds goes to 0 as the generic term of

eun
k 5 un

k 2 u.
a convergent series.

This is enough to prove the convergence of the domainIt satisfies equations (11) with uinc 5 0. The ‘‘pseudo-
decomposition method. We establish that the error is nullenergy’’ at iteration n has the form (u.u is the complex
in the sub-domain bordering Gext and show the same prop-modulus)
erty for the interior sub-domain by an iterative progression.

The convergence theorem is (see [15]):
E n 5 O

k? j
E

okj
SU ­

­nk
eun

kU2

1 g2ueun
k u2D ds. (12)

THEOREM 1. For all k, we have

We call that quantity a ‘‘pseudo-energy’’ because it is not E
Vk

u=un
k 2 =uu2 1 uun

k 2 uu2 dx goes to 0 with n.
a conventional energy. However, if E n 5 0, then both
eun

k and (­/­nk)eun
k are equal to 0 on Skj . This implies that

(see [12]) eun
k 5 0 in Vk . We want here to point out the importance of the

first order absorbing condition in the convergence pro-The domain decomposition algorithm turns out to de-
crease this pseudo-energy. We have: cess. It is used in the proof to obtain the quantity
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ok eGk,ext
ueun

ku2 ds on the right hand side of (13), which
decreases the pseudo-energy of the error.

An impedance boundary condition on Gint (4) will turn
this term into 2Re(z) eGk,int

ueun
ku2 ds. Hence the importance

of the sign of z stressed in section 2.1.
An other choice of boundary condition on Gext such as

a higher order absorbing boundary condition or a non-local
operator T as in (3) does not allow to prove convergence of
the algorithm. This point is discussed in Section 4.2.

2.2.4. Under-Relaxation

A slight modification of the basic algorithm generates a
new algorithm which has a much better rate of convergence
in applications [16]. We call it the under-relaxed algorithm
because of the introduction of a real parameter r [
]0., 0.5[ which can be viewed as a relaxation parameter. FIG. 4. Convergence history. Dashed line: standard algorithm; solid

line: under-relaxed algorithm.It simply consists in the following modification of the
transmission condition in (11):

2.2.5. Numerical Rate of Convergence

We illustrate the theoretical results of convergence with­

­nk
un11

k 1 igun11
k 5 (1 2 r) S2

­

­nj
un

j 1 igun
j D

(17)
two simple numerical experiments (also described in [16]).

In a first experiment we consider a slightly different
problem than in (6) where there is no scatterer but a source1 r S ­

­nk
un

k 1 igun
kD on Skj .

point at the center of the domain. The solution u satisfies

We find (after some computations) that the new law for 5
(2D 2 g2)u 5 d in V,

S ­

­n
1 igD u 5 0 on Gext .

(19)the decrease of the pseudo-energy (12) is now given by

E n11 5 E n 2 2g2 SO
k
E

Gk,ext

ueun11
k u2 ds We take g 5 2f such that the wavelength is 1. The solution

u is made of radial oscillations which approximate the
fundamental out-going solution H (2)

0 /4i of the Helmholtz
2 (1 2 2r) E

Gk,ext

ueun
ku2 dsD

(18)
equation in the plane. The domain is V 5 [29.75, 9.75] 3
[29.75, 9.75], and sub-domains are rectangles of size
1.3 3 0.3. There are 975 rectangular subdomains. The mesh

2 2r(1 2 r) SO
k, j

E
okj
U ­

­nk
eun

k size is h 5 0.1, so there are 1952 cells in the mesh. We use
a finite element technique [15, 22] combined with an exact
inversion of the linear systems arising from the local

1
­

­nj
eun

j U2

1 g2ueun
k 2 eun

j u2 dsD . sub-problems.
The relative error iun 2 un11iL2(V) /iun11iL2(V) is plotted

versus the number of iterations of the DDM. We obtain
In addition to the usual norm of the error on the external (Fig. 4) a convergence history which shows that the under-
boundaries Gk,ext (first line of (18)), the pseudo-energy is relaxed algorithm for r 5 0.3 converges much better than
decreased by a new factor which depends on the relaxation the basic algorithm.
parameter (second line). This new quantity turns out to A much more difficult case, from the convergence point
be a norm of the error [15]. Indeed, if this term is null, of view, is (still with a source point at the center of the
the error satisfies a Helmholtz equation on the whole do- domain)
main with homogeneous boundary condition. This implies
that the error is zero everywhere.

The same modification of the transmission condition and 5
(2D 2 g2)u 5 d in V,

S ­

­n
1 igzD u 5 0 on Gext .

(20)
remark on the behavior of the under-relaxed algorithm
also hold for the optimal control case (Section 3).
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We want to solve the optimization problem

min
v[U

J(u(v), v), (22)

where U is a closed convex set of admissible controls and
J a given cost functional.

The simplest example of such a cost function is given by

J(u, v) 5 HE
V

1
2

uuu2 dx 1
a
2
E

Gctr

uvu2 dsJ , (23)

where a is a strictly positive penalization parameter. The
first part of the above functional is a norm of the scattered

FIG. 5. Convergence history. Dashed line: standard algorithm; solid field. We try to make the scatterer invisible to the probingline: under-relaxed algorithm.
incident plane wave. The penalization part takes into ac-
count the norm of the control. Adjusting the penalization
parameter a, we can make a compromise between the

where the impedance z takes the values minimization of the energy of the scattered field and the
cost of this minimization. As we only control a part of

z 5 0, 1 1 2i, 0, 2 1 i, the boundary of the scattering object and because of the
penalization term, the solution is not trivially v 5 2uinc .

respectively on the right, top, left, bottom edges of the Thanks to the strict convexity of the functional, the opti-
square. With the same domain decomposition, we obtain mization problem has a unique solution. It is characterized
the following convergence history (Fig. 5), which again by the adjoint problem
shows that the under-relaxed algorithm still converges bet-
ter than the basic algorithm. The convergence is not as
good as in the case z 5 1 everywhere. This is due to
multiple reflections on the boundaries mostly produced by
the Neumann boundary conditions on the left and right 5

2Dp 2 g2p 5 u in V

­

­n
p 5 0 on Gint < Gctr

­

­n
p 2 igp 5 0 on Gext

(24)
boundaries.

3. DDM FOR OPTIMAL CONTROL

3.1. The Optimal Control Problem and the optimality condition

We consider the problem of the optimal control of a
system governed by the Helmholtz problem (6) of Sec-
tion 3.

The boundary Gint of the scattering obstacle is now split
into two parts (see Fig. 6).

On one part, we have the previous scattering boundary
condition; this is still denoted Gint . A second part, called
Gctr , is the interior boundary of the scatterer (between dots
on Fig. 6) on which we had a control variable v, a complex
value function, in the boundary condition:

­

­n
u 5 2

­

­n
uinc 1 v on Gctr . (21)

The solution u(v) of the scattering problem (6) (21) now
depends on the control v, which models artificial emission
of surface currents for electromagnetic waves or forced

FIG. 6. New decomposition of the boundary of the scatterer.vibration for acoustic waves.
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E
Gctr

Re((p 1 av)(w 2 v)) ds $ 0, ;w [ U, (25) E
Gk,ctr

Re((pn11
k 1 avn11

k )(wk 2 vn11
k )) ds

(29)

$ 0, ;wk [ Uk .
which provide a variational expression of the gradient of
the functional. For more general formulations of optimal

These sub-problems are simply the restrictions of ourcontrol problems see [30].
original problem to the sub-domains. The unknowns are
un11

k , pn11
k , and a local control variable vn11

k for the sub-3.2. The Domain Decomposition Method
domains bordering the control boundary, i.e., such that

We present in this section the application of the domain Gk,ctr ? 0/ .
decomposition algorithm to the resolution of the coupled We need to specify the transmission conditions on the
system (6), (21), (24), (25). interfaces Skj between sub-domains in order to ensure that

the sequence of local solutions of these sub-problems con-
3.2.1. The Iterative Algorithm verges to the solution of the global problem.

The domain V is decomposed as in Section 2.2. We keep
3.2.2. The Transmission Conditionsthe same notations and add Gk,ctr 5 ­Vk > Gctr .

We define a family (Uk ) of closed convex sets of admis- For the Helmholtz equation we used transmission condi-
sible local controls on each Gk,ctr satisfying compatibility tions in the form of Robin boundary conditions:
conditions with U:

­

­nk
un11

k 1 igun11
k 5 2

­

­nj
un

j 1 igun
j .;v [ U, vuGk,ctr

[ Uk and (26)

;vk [ Uk , v, such that vuGk,ctr
5 vk ;k, belongs to U.

If we try to apply the same transmission conditions to the
direct and adjoint equation, which are both HelmholtzThese conditions are satisfied by the usual local constraints
equations, i.e.,on the control variable. A typical example is

U 5 hv, j0(x) # v(x) # j1(x) for a.e. x [ Gctrj and ­

­nk
pn11

k 1 igpn11
k 5 2

­

­nj
pn

j 1 igpn
j ,

Uk 5 hvk , j0(x) # vk(x) # j1(x) for a.e. x [ Gk,ctrj

we cannot prove the convergence of the algorithm, thej0 , j1 [ Ly(Gctr);
reason being the coupling between the direct, adjoint, and
control variables in the equations.conversely, global or state constraints do not a priori sat-

This same coupling suggested the introduction of cou-isfy (26).
pled transmission conditions in [4] for the optimal controlWe now describe the method, as in Section 2.2.
of systems governed by scalar elliptic equations. We showInitialize u0

k , p0
k for all k, then iterate for n . 0:

here that this is also a suitable choice in the case of systems
governed by the Helmholtz equation. The coupled trans-
mission conditions take the form

­

­nk
un11

k 1 lpn11
k 5 2

­

­nj
un

j 1 lpn
j on Skj ,

(30)5
2Dun11

k 2 g2un11
k 5 0 in Vk

­

­nk
un11

k 1 igun11
k 5 0 on Gk,ext

­

­nk
un11

k 5
­

­nk
uinc on Gk,int

­

­nk
un11

k 5
­

­nk
uinc 1 vn11

k on Gk,ctr

(27)
­

­nk
pn11

k 2 lun11
k 5 2

­

­nj
pn

j 2 lun
j on skj ,

with l a real positive parameter.

3.2.3. Decomposition in Local Optimal
Control Problems

The algorithm (27), (28), (30), (29) is now well defined;5
2Dpn11

k 2 g2pn11
k 5 un11

k in Vk

­

­nk
pn11

k 2 igpn11
k 5 0 on Gk,ext

­

­nk
pn11

k 5 0 on Gk,int < Gk,ctr

(28)
i.e., it can be shown that the sub-problems are well posed.
They can actually be reinterpreted as the minimization
of Jk(ṽk),
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E
Gk,ctr

Re(p̃k 1 aṽk, wk 2 ṽk) ds $ 0 ;wk [ Uk .Jk(ṽk) 5 E
Vk

1
2

uũk u2 dx 1 E
Gk,ctr

a
2

uṽk u2 ds

(31)

We recognize (29). Therefore, ũk , p̃k , ṽk solve the sub-1 O
j
E

okj

l

2 SU ­

­nk
p̃kU2

1 u p̃k u2D ds,
problem (27), (28), (30), (29) and (ũk, p̃k, ṽk) 5 (un11

k ,
pn11

k , vn11
k ). This sub-problem is equivalent to the minimiza-

tion of Jk given above.where ũk , p̃k are functions of ṽk and solution of the coupled
This local cost function is composed of two terms. Onesub-problems (27), (28), (30) with ũk, p̃k, ṽk, instead of

term is simply the restriction of the original global costun11
k , pn11

k , vn11
k . This functional is of course only defined

function to the considered sub-domain. The other termfor sub-domains Vk such that Gk,ctr ? 0/ . The other sub-
arises because of the coupling introduced in the transmis-problems simply consist of two coupled Helmholtz equa-
sion conditions (30). It aims at minimizing the Neumanntions and involve no control variable.
and Dirichlet boundary values of pn11

k . This makes senseThe optimality condition for the minimization of the
as we intend pn11

k to converge to p on Vk and thereforefunctional Jk can be written
to the smallest possible value as p provide an expression
of the gradient of e

V
Asuu(v)u2 dx, the scattering term of our

J 9k(ṽk) · (wk 2 ṽk) $ 0, ;wk [ Uk , (32) cost function J.
This interpretation is only valid for the particular form

of the cost function (23) and for the sub-domains on whichwhere ṽk is the optimal control.
a control is applied. In a boundary and observation controlLet us define dvk 5 wk 2 ṽk . We denote by (duk , dpk)
case, for example the one described in Section 3.2.5, where(functions of dvk) the solution of the linear equations (27),
we use the functional (43), the observation u(v) will act(28), (30) with duk , dpk , dvk instead of un11

k , pn11
k , vn11

k and
on the sub-domains bordering Gext while the control willwith every source term set to 0.
be split on the sub-domains satisfying Gk,ctr ? 0/ . The geo-With these notations (32) may be rewritten as
metrical domain decomposition may be such that these
two class of sub-domains have an empty intersection inE

Vk

Re(ũk , duk) dx 1 a E
Gk,ctr

Re(ṽk , dvk) ds which case the first term of the functional (31) disappear.
It is natural to believe that such a decomposition will have
some influence on the rate of convergence.

1 O
k

l E
okj

Re S ­

­nk
p̃k ,

­

­nk
dpkD (33) We finally note that whatever the problem, the optimiza-

tion process will be restricted to the sub-domains with non
empty intersection with the support of the control variable.1 Re(p̃k , dpk) ds $ 0, ;dvk [ Uk 2 ṽk .
The number of degrees of freedom on which an actual
optiization will be performed can therefore be greatly re-On the other hand, using the Green formula
duced compared to the global optimal control problem.

3.2.4. The Convergence ResultE
Vk

(Dp̃k , duk) 2 (Dduk , p̃k) dx

(34) Let (u, p, v) denote the solution of the global optimal
control problem (6), (21), (24), (25). We define the errors

5 E
­Vk
S ­

­nk
p̃k , dukD2 S ­

­nk
duk, p̃kD ds

of our approximate sequence with the exact solution by

eun
k 5 un

k 2 u, epn
k 5 pn

k 2 p, evn
k 5 vn

k 2 v.and the equations (27), (28), (30), we obtain

These errors satisfy the linear equations (27), (28), (30),E
Gk,ctr

(p̃k, dvk) ds 5 E
Vk

(ũk, duk) dx (29) with uinc 5 0.
Using (25), (29) and the compatibility conditions (26),

we obtain the estimate (just subtract)
1 O

k
l E

okj
S ­

­nk
p̃k ,

­

­nk
dpkD (35)

2 E
Gk,ctr

uevn11
k u2 ds $ E

Gk,ctr

Re(epn11
k evn11

k ) ds (36)
1 (p̃k , dpk) ds.

Taking the real part of the above quantity, we see that which is to be used in the proof of convergence.
As in Section 2.2.3, we define a pseudo-energy(33), (35) reduce to
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E n11 5 O
k? j

E
okj
U ­

­nk
eun11

k U2

1 l2ueun11
k u2

(37)

E n11 5 O
k? j

E
okj
U ­

­nk
eun11

k 2 lepn11
k U2

1 U ­

­nk
epn11

k 1 lepn11
k U2

ds1 U ­

­nk
epn11

k U2

1 l2uepn11
k u2 ds.

This is a natural extension of (13). 1 O
k
SRe SlE

Gk,ctr

epn11
k evn11

k dsD
The domain decomposition algorithm decreases this

pseudo-energy. We have
2 l E

Vk

ueun11
k u2 dxD .PROPOSITION 2. The pseudo-energy satisfies

The transmission conditions (30) and an equation at stepEn11 # En 2 l O
k
SE

Vk

ueun11
k u2 dx 1 E

Gk,ctr

uevn11
k u2 ds

(38)
n similar to (40) give

1 E
Vk

ueun
ku2 dx 1 E

Gk,ctr

uevn
ku2 dsD . E n11 5 E n 1 O

k
SRe Sl E

Gk,ctr

epn11
k evn11

k dsD
Let us proceed to the proof of this proposition. Using

2 l E
Vk

ueun11
k u2 dx 1 Re SlE

Gk,ctr

epn11
k evn11

k dsDthe equation on the errors, we obtain

2 l E
Vk

ueun11
k u2 dxDRe SE

­Vk

­

­nk
epn11

k leun11
k 2

­

­nk
eun11

k lepn11
k dsD

5 Re SlE
Vk

=epn11
k =eun11

k 2 =eun11
k =epn11

k It is time to use the optimality conditions (36). Substituting
into the above expression, we finally prove (38). It can be
straightforwardly deduced that1 g2(epn11

k eun11
k 2 eun11

k epn11
k dxD (39)

(i) (E n) is a bounded sequence.
1 l E

Vk

ueun11
k u2 dx.

(ii) ok e
Vk

ueun
ku2 dx goes to 0 as the generic term of a

5 l E
Vk

ueun11
k u2 dx. convergent series.

(iii) ok e
Gk,ctr

uevn
ku2 ds goes to 0 as the generic term of

Note that the terms which vanish on the right hand side a convergent series.
of this equality do so precisely because u and p solve adjoint

The convergence theorem now isequations. Using thew boundary conditions on Gk,int and
Gk,ctr and Gk,int , we substitute the left hand side of (39). THEOREM 2. For all k, the following quantities
The boundary terms on Gint and Gext again vanish because
of the adjointness of the boundary conditions. This is a E

Vk

u=un
k 2 =uu2 1 uun

k 2 uu2 dx,general feature of the algorithm which will prove useful
in different situations (see also Section 4.2). E

Vk

u=pn
k 2 =pu2 1 upn

k 2 pu2 dx,

Re SO
j
E

okj

­

­nk
epn11

k leun11
k 2

­

­nk
eun11

k lepn11
k dsD E

Gk,ctr

uvn
k 2 vu2 ds,

5 Re SlE
Gk,ext

i(epn11
k eun11

k 1 eun11
k epn11

k dsD
(40) go to 0 with n.

1 l E
Vk

ueun11
k u2 dx 1 Re Sl E

Gk,ctr

epn11
k eun11

k dsD The proof, relying on (i), (ii), (iii) is similar to the proof
of Theorem 1 detailed in [15] (see also [4]).

The interested reader will actually see by making the5 l E
Vk

ueun11
k u2 dx 2 Re Sl E

Gk,ctr

epn11
k evn11

k dsD .
computations himself that the classical Robin boundary
condition of Section 2 cannot yield the same convergence
result (because of the coupling).We can now rewrite the pseudo-energy,
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where n is the exterior normal at a point M running on
Gcont and d 5 (cos(u), sin(u)).

We take as a cost function

J(u(v), v) 5HE
A

1
2

uC(u(v), u)u2 du 1
a
2
E

Gctr

uvu2 dsJ , (42)

where, in 2-D, A is a given angular sector, subset of [0, 2f[.
The expansion (41) indicates, in the case when A 5

[0, 2f[, that an approximation of the cost function (42) is
given by

J(u(v), v) 5HE
Gext

1
2

u(u(v)u2 ds 1
a
2
E

Gctr

uvu2 dsJ (43)

FIG. 7. Decomposition of the contour.

where the integration is performed on the exterior bound-
ary Gext (taken here as a circle of diameter 1).

Inequation (38) indicates a different behavior of the The adjoint equation, analog of (24) for that particular
algorithm for the optimal control problem compared to cost function (43), is now
(13) for the plan Helmholtz problem. The decrease of
the pseudo-energy does not depend any longer on the
boundary condition or even on differential operator used
in the direct problem but only on the second hand term
of the adjoint equation. This will prove useful in Section 5

2Dp 2 g2p 5 0 in V

­

­n
p 5 0 on Gint < Gctr

­

­n
p 2 igp 5 u on Gext .

5.2, where we discuss different problems and boundary
conditions.

3.3. Minimization of the Far Field

The above method applies to a wide class of linear opti- The optimality condition (25) is unchanged and the
mal control problems (see [30] for a review of such domain decomposition and proof of convergence easily
problems). adopted.

We focus in this section to the case of a non-local cost If we decide to keep the exact formulation of the far
function involving the expression of the far field (used to field as given in (42), the adjoint equation is now
define the radar cross section), which turns out to be more
interesting from the application point of view.

Let us assume that u has the following asymptotic expan-
sion at infinity in polar coordinates: 5

2Dp 2 g2p 5 C*(C(u)) in V

­

­n
p 5 0 on Gint < Gctr

­

­n
p 2 igp 5 0 on Gext ,

u(r, u) 5
e2igr

r1/2 hC(u, u) 1 O(r21)j. (41)

C(u, u) is the far field in the direction u and this equation
where C * is the adjoint operator of C and the optimalityis equivalent to (2). Let us take Gcont to be a contour surface
condition (25) is still unchanged. A mathematical study ofcontaining the scattering obstacle (see Fig. 7). A classical
existence and uniqueness of solutions for such a problemresult of integral equation theory [13, p. 66] gives
can be found in [23].

We now discuss the application of our algorithm to this
C(u, u) 5

e2if/4
Ï8fg

E
Gcont

problem. We modify accordingly our algorithm and (28)
becomes

3 S2
­

­n
u(M) 1 ign · du(M)D eigOWM · d ds(M).

2Dpn11
k 2 g2pn11

k 5 C *(C(un11
cont)) in Vk , (44)
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where for all k, un11
cont 5 un11

k on Gk,cont with the obvious and their first derivatives are supposed to be piecewise
continuous, so that the problem is well posed.notation Gk,cont 5 ­Vk > Gcont (see Fig. 7).

Convergence of the algorithm with the same coupled We modify the domain decomposition algorithm as
follows,transmission condition (30) can be proved using the same

kind of arguments.
Due to the non-local character of the functional C we

see that the resolution of the sub-problems set in sub-
domains having non-empty intersection with Gcont is no
longer explicit. These sub-problems are instead coupled
through the right hand side of equation (44). A simple 5

2=(ek=Wun11
k ) 2 g2rkun11

k 5 0 in Vk

ek
­

­nk
un11

k 1 ibkgun11
k 5 2ej

­

­nj
un

j 1 ibj gun
j on Skj

ek
­

­nk
un11

k 1 ibkgun11
k 5 0 on Gk,ext

­

­nk
un11

k 5
­

­nk
uinc on Gk,int ,

solution to this problem is of course to decompose the
domain V such that Gcont be fully contained in only one
sub-domain.

One could also try to relax the coupling term by replac-
ing it by C *(C(un

cont )) which is available from the previous
(46)iteration. In this case, we cannot prove convergence.

3.4. Using the Optimal Control Algorithm to Solve the where ek denotes the value of e in Vk . We necessarily
Plain Direct Problem have ek 5 ej on Skj . The (bk) are real positive coefficients

to be determined. They must satisfy bk 5 bj .In this section we explain how the Optimal Control algo-
A study of the dimensionality of these equations indi-rithm can be used to solve the plain direct Helmholtz

cates that b has to be of the same dimension as Ïer. Aproblem.
possible choice for bk (and bj ) on Skj isWe first remark that we can add a fictive adjoint problem

to the direct scattering problem. Instead of solving simply
(6) we also consider the problem bk 5

1
2

(Ïekrk 1 Ïej rj),

the arithmetic mean value ofÏekrk on the interface.
The pseudo-energy has to be modified accordingly:5

2Dp 2 g2p 5 u in V

­

­n
p 5 0 on Gint < Gctr

­

­n
p 2 igp 5 0 on Gext .

(45)

E n 5 O
k? j

E
okj
S 1

bk
Uek

­

­nk
eun

kU2

1 bkg2ueun
ku2D ds

(47)The adjoint problem is well posed and depends on u. It is
similar to the optimal control problem of Section 4 except

1 O
k
E

­Gk,ext
S 1

bk
Ue ­

­nk
eun

kU2

1 bkg2ueun
ku2D ds.for the absence of control variable v and optimality condi-

tion (25).
We now apply the domain decomposition (27) (28) (30) The proof of convergence now follows the same steps as

of Section 4 where we forget the control variable vn11
k (i.e., in Section 2.

we systematically take vn11
k 5 0) and the optimality condi- The optimal control case generalizes likewise to the in-

tion (29) to solve the coupled problem (6), (45). homogeneous case.
The proof of convergence is similar to and actually sim-

pler than the proof of Section 3.2.4. There are no optimality 4.2. Other Boundary Conditions
conditions (25), (29) and hence no estimate (36). The law

We already pointed out the importance of the lowestof decrease for the pseudo-energy is still given by (37):
order absorbing condition in the convergence process (Sec-
tion 2.2.3). This section shows how to deal with different

E n11 5 E n 2 l O
k
SE

Vk

ueun
k 1 1u2 1 ueun

k u2 dxD . boundary conditions.

4.2.1. Waveguide Transparent Condition4. SOLVING OTHER PROBLEMS

We present here a wave guide problem which involves
4.1. The Inhomogeneous Case

a non-local transparent boundary condition. For more de-
tails and comments on this formulation and more generalNow we come back to the inhomogeneous problem (1)

with non-constant coefficients e and r. These coefficients cases see [21, 25, 27, 28, 35]. The wave guide is made of
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waveguide in successive slices in x (Fig. 9), we can try to
apply the domain decomposition method (Section 2) on
this example.

The modal decomposition of the transmission condition
(see (11)) is

­

­x
ûn11

l,k 1 igûn11
l,k 5

­

­x
ûn

l,j 1 igûn
l,j on okj .

We immediately see in the proof of convergence that theFIG. 8. A wave guide.
boundary condition (49) for propagative modes will induce
no problems as this boundary condition has the form of a
first order absorbing boundary condition. The correspond-

an infinite 2-D strip V defined by 0 , y , L in a space ing pseudo-energy for the lth mode indeed satisfies the
described with Cartesian coordinate (x, y) (see Fig. 8). decrease law

If we consider the homogeneous Helmholtz equation
(6) inside V and Neumann boundary conditions

Ên11
l 5 Ên

l 2 2g2 O
k
E

Gk,ext

uên11
l,k u2 1 uên

l,ku2 ds.(­/­y)u 5 0 on y 5 0, L, the solution u can be decomposed
on an infinite number of modes. More precisely, we write

Conversely, for the evanescent modes and because of the
real coefficient Ïl2f2 2 g2 in (50), the pseudo-energy is
stationary:u(x, y) 5 O

l50,y
ûl(x) cos Slf

L
yD .

Ên11
l 5 Ên

l .

The lth mode ûl satisfies the 1-D Helmholtz equation (we
The standard domain decomposition of Section 2 doesnormalize L to 1 for simplicity),

not converge for evanescent modes. The variants of the
algorithm described in the previous section can resolve
this problem.2

­2

­x2 ûl 1 (l2f2 2 g2)ûl 5 0, (48)
If we use an under-relaxed transmission condition (Sec-

tion 4.1), i.e.,

for which an exact analytic solution can be derived.
If we decide to close the exit of the wave guide (on the ­

­gk
ûn11

l,k 1 igûn11
l,k 5 (1 2 r) S2

­

­nj
ûn

l,j 1 igûn
l,jDside x . 0) with a transparent boundary Gext (see Fig. 8),

we can derive an exact transparent boundary condition
mode by mode. We have two possibilities: 1 r S ­

­nk
ûn

l,k 1 igûn
l,kD ,

First, if lf , g, the mode is propagative. We know the
exact form of the outgoing solution of (48). It satisfies

the decrease law for the pseudo-energy of the evanescent
mode Ên

l is a modification of (18):
­

­x
ûl 1 iÏg2 2 l2f2 ûl 5 0 on Gext . (49)

Second, if lf . g, the mode is evanescent and the bound-
ary condition is

­

­x
ûl 1 Ïl2f2 2 g2 ûl 5 0 on Gext . (50)

An analogous transparent boundary condition can be
FIG. 9. Decomposition of the wave guide.defined as the x , 0 side. If we decide to decompose the
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cal stripes. This will formally be enough to point out con-
Ên11

l 5 Ên
l 2 2r(1 2 r) SO

k, j
E

okj
U ­

­nk
ên

l,k 1
­

­nj
ên

l,jU2

vergence failures and possible cures.
The sub-domains are infinite stripes in the x direction.

1 g2uên
l,k 2 ên

l,j u2 ds). The interfaces Skj are now lines of equations x 5 constant.
We assume that d is constant on the sub-domains contained
in the absorbing layer. For such a sub-domain the pseudo-There are no terms supported by Gext because of the eva-
energy has to be modified (as in the inhomogeneous case)nescent boundary condition (50) but the additional terms
and uses terms of the forminduced by the under-relaxation guarantee convergence.

We can also use the ‘‘optimal control’’ variant of Sec-
tion 4.1. The fictive adjoint sub-problem associated to E

okj
SU d

­

­y
eun

kU2

1 g2ueun
ku2D ds.(48) (50) is (the problem is actually self-adjoint)

The key point of the demonstration (Section 2.2.3) with2
­2

­x2 p̂n11
l,k 1 (l2f2 2 g2)p̂n11

l,k 5 ûn11
l,k on Vk , (51)

the simple transmission condition (see (11)) is to evaluate
the cross products­

­x
p̂n11

l,k 1 Ïl2f2 2 g2 pn̂11
l,k 5 0 on Gext . (52)

Re SE
­Vk

d
­

­nk
eun11

k igeun11
k dsD

We then add the modal decomposition of the coupled
transmission conditions (30):

which express the quantity by which the pseudo-energy
decreases. We integrate by parts an equation of the type­

­nk
ûn11

l,k 1 lp̂n11
l,k 5 2

­

­nj
ûn

l,j 1 lp̂n
l,j on okj , (5) for the error and obtain an equivalent of (14):

­

­nk
p̂n11

l,k 2 lûn11
l,k 5 2

­

­nj
p̂n

l,j 2 lûn
l,j on skj .

Re SE
­Vk

d
­

­nk
eun11

k igeun11
k dsD

This procedure converges as outlined in Section 4.2 and
5 Re S2ig SE

Vk

1
d U ­

­x
eun11

k U2

the decrease of the pseudo-energy, defined as

1 d U ­

­y
eun11

k U2

2
g2

d
ueun11

k u2D dxD .Ên11
l 5 O

k? j
E

okj
U ­

­nk
êun11

l,k U2

1 l2uêun11
l,k u2 1 U ­

­nk
êpn11

l,k U2

1 l2uêpn11
l,k u2 ds, In (14) the right hand side was vanishing. Now d is a

complex number and we immediately see that the real
is given by (38). parts in these different coefficients are going to be of oppo-

The introduction of a fictive adjoint problem makes it site sign.
possible to deal with the embarrassing terms on the bound- It is therefore not possible to prove the convergence of
ary (as well as the non-coercive terms in the Helmholtz the classical domain decomposition method. Nor does it
equation) and to add a coercive term on the right hand seem trivial to use an under-relaxed variant of the algo-
side of (51) which will guarantee the decrease of the rithm or more general transmission conditions with an
pseudo-energy and hence the convergence. arbitrary complex parameter instead of the pure imaginary

ig. Conversely, the optimal control algorithm can solve
4.2.2. PML Absorbing Layers the problem.

As in Section 5.2.1, we define a fictive adjoint ofIn the case of PML (5) the damping layer replaces in
Eq. (5). As d is a complex parameter, we considersome sense the absorbing boundary conditions. Let us note

that, in contrast to classical absorbing boundary conditions,
2­2

xx p 2 d­y(d­y p) 2 g2p 5 u; (53)it seems not easy to prove existence of a solution to the
system with PML layers (see [11] on this problem). So in
this section we simply postulate the existence of the solu- then the domain decomposition described in Section 4.2

is easily applied to solve (5), (53) and the proof of conver-tion with a PML layer.
We now go a bit faster and simply examine the behavior gence gives the same law of decrease for the pseudo-

energy.of the algorithm on sub-domains consisting of infinite verti-
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5. NUMERICAL RESOLUTION

In the framework of the domain decomposition method,
various strategies are possible with regard to the shape
and number of sub-domains and the discretization and
method of resolution of the sub-problems. It is possible to
work on a discrete formulation of the global problem.
Mixed hybrid finite elements (see [22, 34] on this tech-
nique) are for instance well suited to our algorithm for its
uses in particular, as degrees of freedom, the fluxes of the
normal derivative and the average values of the trace of
the direct and adjoint states on the interfaces which are
the natural unknowns of our transmission conditions. It
allows in particular a direct transcription of the domain
decomposition algorithm and the proof of its convergence
to the discrete formulation.

We illustrate this paper by the resolution of the direct
problem (6) and the corresponding optimal control prob-
lem minimizing the cost function (23) reformulated in Sec-
tion 3.1 as the coupled system (6), (21), (24), (25). For
both problems uinc is chosen to be an incident horizontal
plane wave. More precisely, we take uinc 5 e2igx.h, where
h is the horizontal direction pointing inside the resonator FIG. 10. Scattered field, in which a plane wave arrives from the right.
in Fig. 1.

In this experiment, we impose no constraint on the con-
trol v. In practice, this means that (25) can be reduced to We now comment on the results displayed in Fig. 10,
v 5 p/a on Gcont and then used to replace v in (21). The same which give a qualitative indication of the ability of this
simplification holds for (29) in the domain decomposition algorithm to compute direct and optimal control problem
algorithm. The domain decomposition methods now sim- for the Helmholtz equation. A plane wave arrives from
ply amounts to the iterative resolution of the local coupled the right and we display the scattered field. At the top of
sub-problems (27) (28) where vn11

k has been replaced by Fig. 10, there is no control; we see the multiple reflections
2pn11

k /a. caused by the hard resonator. At the bottom we see the
The domain V is a disk of radius 1. It is discretized (in optimal control solution generated by our algorithm. Re-

polar coordinates (r, u)) using 64 3 256 mixed hybrid first flections are killed inside but not outside as the control
order finite elements. The resonator is located between only acts on the inside boundary of the resonator.
discretization levels 40 and 44 in r and has an opening of
16 levels of discretization in u. We took g 5 2f 3 6.4, which REFERENCES
roughly corresponds to a 0.16 wavelength. The numerical
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